Peripheral NMDA receptors revisited – Hope floats

Neuropathic pain patients, especially those with complex regional pain syndrome (CRPS), remain in the category of “poorly treated” in the clinic. Many currently used therapies for these patients have a low success rate, inconsistent results and/or are based on anecdotal evidence. Therefore, the search for novel treatments and therapies is on-going. In a paper published in this volume by Finch et al. [6] the group revisits the use of ketamine, an N-methyl-D-aspartate (NMDA) antagonist for the treatment of CRPS. The use of topical 10% ketamine cream and a double-blind, placebo-controlled crossover trial set this study apart from those that came before (see [6] for references). Patients were tested on the symptomatic and contralateral, healthy limb for sensitivity to light touch, light brushing, pressure, as well as punctate and thermal stimulation. Testing was done before and 30 min after application of ketamine cream or placebo, on either the symptomatic or healthy limb. Application of the cream reduced the allodynia to light brushing and hyperalgesia to punctate stimulation. Because ketamine levels in venous blood were below detectable limits, a systemic effect of ketamine was ruled out. The targets – peripheral NMDA receptors – were discovered/described in the 1980s but the location and function of these receptors in pain transmission have not been exploited to any great extent. Given the decades of data confirming a role for NMDA receptors in pain, why have we not capitalized on these peripheral receptors? Are there too few NMDA receptors to make an impact? Are they expressed by the wrong fiber types? Is peripheral glutamate even involved in the mediation of neuropathic pain or have we just overlooked these receptors and missed the boat?

1. Widespread expression of NMDA receptors in sensory neurons

A variety of techniques have confirmed NMDA receptor expression in the cell bodies, as well as peripheral and central processes of primary sensory neurons in rodents [3,11,14] and humans [8,16]. In lumbar dorsal root ganglia (DRG), virtually all cells express the NR1 subunit [14]. In the periphery, analysis of the planter (mixed motor and sensory) and sural (purely sensory) nerves show approximately 50% of the myelinated and 20–30% of the unmyelinated axons label for NR1 [4]. In the same study, measurements of axonal diameters of myelinated fibers indicate that all sizes including Aβ and Aδ are labeled, along with unmyelinated C fibers. Thus, there is no shortage of NMDA receptors expressed by primary sensory neurons.

2. Nociceptors express NMDA receptors

Expression of NMDA receptors by nociceptive C and Aδ fibers is confirmed by single fiber recordings from plantar nerves [5]. Behavioral studies demonstrate that local injection of NMDA agonists produce pain behaviors while NMDA antagonists block the pain [17]. Local administration of NMDA antagonists block mechanical sensitivity due to inflammation [5] or nerve injury [7]. Finally, there is co-localization of the NR2B subunit with markers of small diameter and/or nociceptive DRG cells (i.e. wheat germ agglutinin horse radish peroxidase [WGA-HRP], isoleucin B4 [I4], calcitonin gene-related peptide [CGRP]) [12]. Thus, it is clear that NMDA receptors are expressed by a population of nociceptors. Since many NMDA receptors are autoreceptors, they could control the release of glutamate from primary afferents, as well as modulate the release of CGRP and substance P. There is evidence for this NMDA-induced modulation at central terminals of primary afferents [9,10] and there is no reason to doubt that it can occur in peripheral terminals as well.

3. Peripheral glutamate is important in the mediation of neuropathic pain

If glutamate release is critical to the development of neuropathic pain in a nerve-injured region, then it would follow that glutamate receptor activation plays a prominent role in the pain that develops. The data indicate that the peripheral release of glutamate and subsequent activation of NMDA receptors, (but not AMPA or kainate receptors), contributes to the mechanical hyperalgesia following nerve injury [7]. Furthermore, the data indicate that local injection of NMDA antagonists will alter the induction and the maintenance of neuropathic pain [7]. Thus, it has been hypothesized that an increased level of peripheral glutamate (through injury discharge and/or ectopic discharge of primary afferents), is critical to the induction of neuropathic pain. This being the case, peripheral administration of glutamate antagonists should alter neuropathic pain symptoms.

4. Are peripheral NMDA receptors an attractive target?

The main ingredients are present in the periphery that would predict successful analgesia following treatment with NMDA antagonists: an abundance of NMDA receptors, location of the receptors on nociceptors, a confirmed role for glutamate in peripheral pain. One might postulate that the key to success when using NMDA antagonists lies in activating enough peripheral NMDA receptors to block pain transmission, but keeping the systemic concentration low enough to avoid unwanted CNS side effects (which include memory impairment, psychotomimetic effects, ataxia, motor incoordination). Surprisingly in rat, intradermal MK-801 (an NMDA antagonist) did not have good effect in reducing hyperalgesia in four different models of neuropathic pain including models of nerve trauma- and metabolic-induced
neuropathic pain [1]. These data would indicate that NMDA recep-
tors are not crucial to the development/maintenance of peripheral
sensitization in these situations. However, the human studies by
Finch et al. [6] and Sigtermann et al. [15], provide rays of hope. As
described above, 10% ketamine applied locally had good effect,
relieving some of the sensory abnormalities of CRPS [6]. Sigter-
mann et al. [15] also reported decreased pain scores in CRPS using
prolonged infusion (4.2 days) of low dose ketamine. Small fiber
changes in the periphery have been described in CRPS [13] and
as Borsook reviews [2], there are a number of plastic changes
throughout the CNS in chronic pain patients. Thus, combining the
two approaches, topical+low dose infusion, may lead to superior
pain relief because both peripheral and central NMDA receptors
are affected. Alternatively, targeting NR2B expressing cells with
selective NMDA antagonists may provide analgesia with reduced
side-effects and improved efficacy. There is overwhelming ana-
tomical and physiological data to support the use of peripheral
NMDA antagonists in treatment of neuropathic pain as well as
other pain states. It is too soon to abandon this “ship”.

References

[1] Aley KO, Levine JD. Different peripheral mechanisms mediate enhanced
nociception in metabolic/toxic and traumatic painful peripheral
[3] Carlton SM, Hargett GL, Coggeshall RE. Localization and activation of glutamate
receptors in unmyelinated axons of rat glabrous skin. Neurousci Lett
[4] Coggeshall RE, Carlton SM. Ultrastructural analysis of NMDA, AMPA, and
kainate receptors on unmyelinated and myelinated axons in the periphery. J
[6] Finch PM, Knudsen L, Drummond PD. Reduction of allodynia in patients with
complex regional pain syndrome: A double-blind placebo-controlled trial of
receptors contribute to mechanical hyperalgesia in a neuropathic pain model
Glutamate receptors in peripheral axons of human skin. Neurosci Lett
[9] Liu H, Manthyl PW, Basbaum AI. NMDA-receptor regulation of substance P
N-methyl-D-aspartate autoreceptors in the spinal dorsal horn. Proc Natl
dorsal root ganglion neurons that is mediated predominantly by NMDA
[12] Ma QP, Hargreaves KJ. Localization of N-methyl-D-aspartate NR2B subunits on
primary sensory neurons that give rise to small-caliber spinal nerve fibers in
central antinociceptive and neuroprotective effects of ketamine in a murine
model of hyperalgesia induced by complete sciatic nerve ligation. Pain
[14] Sato K, Kiyama H, Park DT, Tolyacza M, AMPA, and NMDA receptors are
RY, Daham A. Ketamine produces effective and long-term pain relief in patients
[16] Winorite T, Joram U, Stubbendant A. Local treatment with the N-methyl-D-
aspartate receptor antagonist ketamine, inhibit development of secondary
[17] Zhou S, Basaera I, Carlton SM. Peripheral administration of NMDA, AMPA or

Susan M. Carlton
Department of Neuroscience and Cell Biology,
University of Texas Medical Branch, 301 University Blvd.,
Galveston, TX 77555-1069, USA
Tel.: +1 409 772 1703; fax: +1 409 762 9382.
E-mail address: smcarlo@utmb.edu